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Abstract: This paper presents CSPR, a compressive sensing based approach for path reconstruction in wireless sensor 

networks. By viewing the whole network as a path representation space, an arbitrary routing path can be represented by 

a path vector in the space. As path length is usually much smaller than the network size, such path vectors are sparse, 

i.e., the majority of elements are zeros. By encoding sparse path representation into packets, the path vector can be 

recovered from a small amount of packets using compressive sensing technique. CSPR formalizes the sparse path 

representation and enables accurate and efficient per-packet path reconstruction. CSPR is invulnerable to network 

dynamics and lossy links due to its distinct design. A set of optimization techniques are further proposed to improve the 
design. We evaluate CSPR in both testbed-based experiments and large scale trace-driven simulations. Evaluation 

results show that CSPR achieves high path recovery accuracy and outperforms the state-of the- art approaches in 

various network settings. 
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I. INTRODUCTION 

 

The per-packet routing path serves as the meta-information for understanding detailed Wireless Sensor Networks 

(WSNs) behaviours in many network maintenance and diagnosis situations, e.g., routing dynamics [33], detections on 

wormholes [9] or packet loss holes [32], end-to-end packet transmission delay [29] or even perhop per-packet 

transmission delay [13], network diagnosis [18] [26],etc. Reconstructing per-packet routing path information, however, 
has been known non-trivial. WSNs are self-organized and usually deployed in dynamic environments. The underlying 

network topology constantly changes and no fixed routing path can be expected for each node [30]. A straightforward 

solution to reveal the packet\ path is to record the complete path during packet forwarding, e.g., storing the ID sequence 

of all relay nodes, in each packet. The introduced overhead linearly grows with the routing path length, far scalable. 

The key insight of our design is as follows. The length of a routing path is usually much smaller than the network size. 

As a concrete example, the maximum path length reported in CitySee [22] is only 20 hops in comparison with its   

network size of 1200 nodes. Therefore, we can construct a path representation space, the number of whose dimensions 

equals to the total number of nodes in the network. In such a representation space, an arbitrary routing path can be 

represented by a path vector, where each element  

 corresponds to a node in the network. The path vector sets the hop numbers for nodes on the path and zeros for those 

not involved in the path. As the path length is much smaller than the network size, such path vectors are thus sparse, 
i.e., the majority of elements are zeros. The path reconstruction becomes a problem of unveiling all existing path 

vectors hidden in the representation space. If all nonzero elements of a path vector can be encoded (with few bytes) into 

the packets forwarded along the path, we can recover the path vector (and thus the represented routing path) based on a 

small amount of packets using compressive sensing technique [5] [12]. 

In this paper, we propose a Compressive Sensing based Path Reconstruction method, CSPR, which formalizes the 

sparse path representation and leverages compressive sensing to recover perpacket routing path. CSPR lets intermediate 

nodes briefly annotate the transmitted packets and classifies packets travelling along different paths into different 

groups. For a particular path, the forwarded packets encode independent observations and CSPR performs compressive 

sensing to recover the path when a certain amount of pack ets (and the annotations) are collected at the sink. The path 

reconstruction by CSPR requires no inter-packet correlations and utilizes only a small number of received packets. 

CSPR is thus invulnerable to topology dynamics and lossy links.  On the protocol level, CSPR introduces only small 
and fixed overhead in annotating each packet, which could be optimized accordingly for practical WSNs (e.g., 8 bytes 

per packet for a network with 245 nodes). In addition to the basic design, we further propose a set of optimization 

techniques to gradually shrink the representation space and heuristically scan possible paths for all unrecovered path 

vectors through the network topology learnt from already reconstructed routing paths. The numbers of packets needed 

for remaining path reconstructions are lowered and processing is thus accelerated. To examine the performance of 



IJIREEICE IJIREEICE  ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

       

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

ISO 3297:2007 Certified 

Vol. 5, Issue 4, April 2017 
 

Copyright to IJIREEICE                                                   DOI 10.17148/IJIREEICE.2017.5429                                                         160 

CSPR, we first evaluate our method using a 29 TelosB mote tested. The experiment results validate the feasibility and 

applicability of CSPR in practice. We further conduct extensive and large-scale trace-driven simulations to examine the 
efficiency and scalability of CSPR. Compared to the state-of-the-art methods, CSPR achieves higher path recovery 

accuracy (i.e., 100% and 96% for experiments and simulations, respectively) with comparable overhead (8 extra bytes 

per packet). 

 

II. PROBLEM STATEMENT 

 

In a WSN, all sensor nodes generate and relay packets to the sink along some routing paths [28]. At the sink, a path 

reconstruction method is desired to recover the routing path each packet traveled. One packet path is an ID sequence 

from the source of the packet to the sink, including IDs of all intermediate nodes relaying this packet and their hop 

numbers as well. There have been many efforts made to address the path reconstruction problem (as reviewed in 

Section 5). Two state-of-the-art methods, MNT [16] and Pathfinder [14], have been recently proposed. MNT [16] 

reconstructs per-packet path by exploiting interpacket correlation, i.e., a relayed packet and its adjacent packets locally 
generated at any node i are usually forwarded to the same next hop. Such local packets serve as anchors of the relayed 

packet at node i. As the first-hop receiver is recorded in packets, the path of a packet can be obtained by concatenating 

the first-hop receivers of all its anchors. Improving on MNT, Pathfinder [14] tolerates certain inconsistence in inter-

packet correlation via explicitly recording inconsistence in packets. The reconstruction failure occurs once the 

inconsistence exceeds the tolerance capacity. To accurately locate anchors, Pathfinder further imposes the packet 

generation rate of each node to be identical and fixed. Both MNT and Pathfinder require stable network topology such 

that inter-packet correlation can be captured. The practical WSNs, however, behave dynamically and the wireless links 

are far from stable [17] Both network dynamic and packet loss have strong impacts on the anchor identifications, and 

thus deteriorate the performances of MNT and Pathfinder. 

 

III. RELATED WORK 
 

Pathfinder exploits temporal correlation between a set of packet paths and efficiently compresses the path information 

using path difference. At the PC side, Pathfinder infers packet paths from the compressed information and employs 

intelligent path speculation to reconstruct the packet paths with high reconstruction ratio. The basic idea of iPath is to 

exploit high path similarity to iteratively infer long paths from short ones. iPath starts with  an initial known set of paths 

and performs path inference iteratively.  

iPath includes a novel design of a lightweight hash function for verification of the inferred paths. Routing in wireless 

sensor networks differs from routing in fixed networks in various ways: there is no infrastructure, wireless links are 

unreliable, sensor nodes may fail, and routing protocols have to meet strict energy saving requirements. Many routing 

protocols have been proposed for WSN and power efficiency is a major issue in network. 

 

IV. METHODS 
 

A. CSPR overview 

B. In-network path information encoding 

C. Compressive sensing based path reconstruction 

D. Optimization 

 

A. CSPR Overview 

Several fields in the packet header are used by CSPR to carry packet information. SEQ is the packet sequence number. 

sArr is source address of the packet. pLen records the path length. bFlt is a bloom filter to space-efficiently record the 

IDs and corresponding hop count information of all relay nodes. aMsr stores the encoded measurement along the path. 

All the five fields are initialized at the source node.  
 

 
Figure1.1: System architecture of CSPR. 
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In particular, SEQ and sArr keep unchanged after initialization, whereas pLen, bFlt and aMsr are updated at each 

intermediate hop. Note that only two fields, bFlt and aMsr, are additionally introduced by CSPR. SEQ, sArr and pLen 
can be usually found in the default packet header. 

 

B. In-network path information encoding 

In this subsection, we introduce the in-network updating of the last three fields pLen, bFlt and aMsr in turn. 
 

 Updating of pLen.  

The pLen field of each packet is initialized to 0 by the source and increased by one at each intermediate hop along the 

path. At each intermediate hop, pLen is updated prior to both bFlt and aMsr as the updating of latter two fields relies on 

the new pLen value. 
 

 Updating of bFlt. 

 Bloom filter is an L-bit array associated with H independent hash functions, where L and H are two parameters to be 

determined. The bFlt field of each packet accommodates an L-bit array, and sensor nodes use the same set of H 

independent hash functions fi(·), i=1,2, · · · ,H, to update bFlt. 
 

 Updating of aMsr. 

 The aMsr field in each packet is also initialized as 0 by the source and updated along the path. At each intermediate 

hop, the node encodes its hop number along the path in aMsr. 

 
C. Compressive sensing based path reconstruction. 

We first present the packet classification mechanism in CSPR, and then detail the compressive sensing based path 

reconstruction with path verification scheme to ensure the reconstruction  
 

 Packet classification. 

 For each received packet, CSPR extracts 

the 3-tuple key, < sArr,pLen, bFlt >, from the packet header and then classifies it into a path group. A path group is 

designed to contain packets traveling the same path. At the sink, CSPR manages all path groups with a database. 
 

 Path reconstruction. 

 Based on the encoded measurements in received packets, CSPR recovers the path for a path group using compressive 

sensing technique. CSPR executes path verification component to further ensure its correctness. 
 

 Path verification.  

Given a recovered path and a packet, the path verification components verify whether the recovered path is valid for the 

packet via path vector s of the recovered path and aMsr value of the packet. The recovered paths will benefit all future 

packets traveling on them. When a group with recovered path receives a packet, CSPR just simply invokes the path 

verification component to check whether the packet truly traveled the recovered path. If yes, this packet obtains its path 
immediately. In CSPR, for a given 3-tuple key, path groups are matched with the packet following the ascending 

order of gIdx keys. At worst, the packet might be assigned a newly formed path group. 

 

D. Optimization 

We propose two optimization techniques to improve the performance of our basic design. 
 

 Reduction of path representation space.  

This optimization aims to reduce the number of elements in a representation space by continuously monitoring the 

network topology. The minimum number of packets required to recover a length of k path is ck log(Nk ), which is 

proportional to the space size N. The basic design utilizes all N nodes in the network to form the space. This 

component tries to reduce the space size for each path group and thus reduces its needed packets for path 

reconstruction. 
 

 Heuristic path scanning. 

 For those path groups with insufficient accumulated packets even after a long time, this component is designed to scan 

possible paths for them based on the learnt network topology. It is triggered when the path reconstruction deadline of a 
path group is approaching. As this scheme is relatively computation intensive, it recovers path not only for the group 

which triggers its execution, but also for other unrecovered groups whose paths have the same source, sArr, as this 

group at the same time. 
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V. RESULTS AND DISCUSSIONS 

 

 
 

Figure2.1: Average number of paths for each node. The distribution of packet volumes for all path groups. 

 

 
 

Figure2.2: The path information encoding process for a packet p. The SEQ, sArr, pLen, aMsr and bFlt fields are all 

initialized at source node, and the last three fields are updated hop-by-hop as depicted in the attached box at each 

intermediate hop. CSPR can extract a 3-tuple key from packet p at the sink. 

 

 
 

Figure2.3: The portion of packets benefited from already recovered routing paths. The packet path reconstruction 

progresses with the core. 
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CONCLUSION 

 
In this paper, we present the CSPR, a compressive sensing based path reconstruction approach. Different from the 

state-of-the-art approaches, CSPR is inherently insensitive to network dynamics and lossy links. Extensive evaluations 

through both tested-based experiments and trace-driven simulations show that CSPR outperforms the state-of-the-art 

approaches in various network settings. 
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